
A very informal introduction to Python

Federico Galatolo

Federico Galatolo A very informal introduction to Python 1 / 39

Python

Object Oriented

Multiple Inheritance

Dynamically Typed

Large built-in libraries

Free (as in freedom) and Open Source

Federico Galatolo A very informal introduction to Python 2 / 39

Why Python?

Figure: Languages popularity over time

High Level

Portable (Actually write once run everywhere)

Extendible in C/C++

Easy to learn and maintain

Federico Galatolo A very informal introduction to Python 3 / 39

PyPI: The Python Package Index

Over 200.000 packages

Over 400.000 developers

Portable packages

Managed by a Non-Profit Organization

Open Source

Federico Galatolo A very informal introduction to Python 4 / 39

Virtual Environments (1)

Method for having project-wide dependencies

Without it everything become very messy in very little time

All the dependencies are stored in a folder

The dependencies folder can be easily snapshotted and retrieved

Federico Galatolo A very informal introduction to Python 5 / 39

Virtual Environments (2)

Create a Virtual Environment with python X.Y in folder env

virtualenv --python=pythonX.Y env

Activate the Virtual Environment

source ./env/bin/activate

. ./env/bin/activate

Deactivate the Virtual Environment

deactivate

Federico Galatolo A very informal introduction to Python 6 / 39

Managing Packages

Install package

pip install package

Uninstall package

pip uninstall package

Snapshot installed packages in requirements.txt

pip freeze > requirements.txt

Install all packages snapshotted in requirements.txt

pip install -r requirements.txt

Federico Galatolo A very informal introduction to Python 7 / 39

Built-in types

Python is dynamically typed.
Variables types are determined at runtime.
Variables can freely change type during the execution.
In python there are a lot of built-in types, the most notables are:

Boolean (bool)

Strings (str)

Numbers (int, float)

Sequences (list, tuple)

Mapping (dict)

There is still hope to have a coherent codebase with dynamic type
checking (last slides)

Federico Galatolo A very informal introduction to Python 8 / 39

Variables assignement

As you might expect variables are assigned like this:

pi = 3 # problems?

name = "Federico"

You can assign multiple variables at once with iterable unpacking.

pi, name = 3, "Federico"

first, second, third = SomeSequence

In python everything is stored and passed as reference with the only
exception of Numbers.

a = [1, 2, 3]

b = a

b[0] = 5 # now a = [5, 2, 3]

Federico Galatolo A very informal introduction to Python 9 / 39

Block syntax: hate it or love it

In python you don’t surround code blocks with curly brackets
You just use indentation

C like syntax

for(int i = 0; i < n; i++){

int k = i % 3

if(k == 0){

// stuff...

}

}

Python syntax

for i in range(0, n):

k = i % 3

if k == 0:

stuff...

Federico Galatolo A very informal introduction to Python 10 / 39

Conditional instructions(1)

Simple conditional instruction with the if keyword.

if someConditions:

someActions()

someOtherActions()

Python uses and and or as logical operators instead of && and ||
if (C1 and C2) or C3:

someActions()

someOtherActions()

Federico Galatolo A very informal introduction to Python 11 / 39

Conditional instructions(2)

The else statement works as you might expect:

if Condition:

someActions()

else:

someOtherActions()

There is no switch case statement in python. You can use if and elif

if C1:

A1()

elif C2:

A2()

elif C3:

A3()

else:

A()

Federico Galatolo A very informal introduction to Python 12 / 39

Conditional instructions(3): Inline

Inline conditional instructions works as you might expect.
The python syntax is:

value if Condition else otherValue

For example:

pi = 3 if isEngineer else 3.1415

Federico Galatolo A very informal introduction to Python 13 / 39

While loops

The while loops works as you might expect:

while Conditions:

Stuff()

otherStuff()

There is no do-while construct in python.

Federico Galatolo A very informal introduction to Python 14 / 39

For loops(1)

In python the for loop is a for each.

for element in elements:

doStuff(element)

elements must be and Iterable.

You can use tuple unpacking in for loops:

for x, y in SequenceOfTuples:

doStuff(x, y)

Federico Galatolo A very informal introduction to Python 15 / 39

For loops(2): useful built-ins

With zip() you can combine one-by-one the elements of two or more
iterables

L1 = [1, 2, 3]

L2 = [4, 5, 6]

for x, y in zip(L1, L2):

print(x, y)

enumerate() will return a list of (index, element) tuples:

names = ["Federico", "Mario", "Giovanni"]

for i, name in enumerate(names):

print(i, name)

Federico Galatolo A very informal introduction to Python 16 / 39

For loops(3): list comprehension

The python equivalent for inline for loop it is called list comprehension.
It is not a for loop but a way for building a list, the syntax is

[someOperation(element) for element in elements]

For example:

squares = [i**2 for i in range(0, N)]

Federico Galatolo A very informal introduction to Python 17 / 39

Functions(1)

You can define a new function using the def keyword

def getCircleArea(r):

return pi*r**2

Default arguments values are indicated with =

def getCircleArea(r, isEngineer=True):

pi = 3 if isEngineer else 3.1415

return pi*r**2

Federico Galatolo A very informal introduction to Python 18 / 39

Functions(2): Variable positional arguments

You can define a variable number of arguments with the * symbol

def sumOfSquares(*args):

squares = [arg**2 for arg in args]

return sum(squares)

Calling the function like this:

result = sumOfSquares(1, 2, 3)

Federico Galatolo A very informal introduction to Python 19 / 39

Functions(3): Sequence dereference

Likewise you can pass sequences as positional arguments in this way:

def norm2D(x, y):

return math.sqrt(x**2 + y**2)

vec = [2, 3]

norm = norm2D(*vec)

Federico Galatolo A very informal introduction to Python 20 / 39

Functions(4): Keyword arguments

Besides positional arguments python has keyword arguments
You can specify that a function uses keyword arguments with the **

symbol.
You must use that symbol as last argument

def greet(language = "en", **kwargs):

if language == "it":

print("Ciao "+kwargs["name"]+" "+kwargs["surname"])

else:

print("Hello "+kwargs["name"]+" "+kwargs["surname"])

greet("it", surname="Galatolo", name="Federico")

greet(name="Mario", surname="Cimino")

Federico Galatolo A very informal introduction to Python 21 / 39

Functions(5): Dictionary dereference

As you might have guessed you can pass a dict of keyword arguments
using the symbol **

def greet(language = "en", **kwargs):

if language == "it":

print("Ciao "+kwargs["name"]+" "+kwargs["surname"])

else:

print("Hello "+kwargs["name"]+" "+kwargs["surname"])

person = dict(name="Federico", surname="Galatolo")

greet("it", **person)

greet(**person)

Federico Galatolo A very informal introduction to Python 22 / 39

Bonus: Iterators and Generators

Iterables are objects that implement the iter () to get an Iterator

Iterators are object that implement the next () to get the next
element
Generators are a kind of Iterators in which the elements are evaluated
on-the-fly

You can define an inline generator with the list comprehension syntax
but using the parenthesis instead of the square brackets.

squares = (i**2 for i in range(0, N))

Federico Galatolo A very informal introduction to Python 23 / 39

Functions(6): yield

Using the yield statement stead of the return the function returns a
Generator.
The elements outputted by the generator are the elements yielded by the
function.
The yield does not stop the execution flow of the function it just yield a
value and go on.

def counter(i, end):

while i < end:

yield i

i += 1

Federico Galatolo A very informal introduction to Python 24 / 39

Functions(7): Inline

You can create inline functions using the lambda keyword.
The syntax is

lambda comma, separated, arguments : expression

For example

norm2D = lambda x, y: math.sqrt(x**2 + y**2)

Federico Galatolo A very informal introduction to Python 25 / 39

Classes(1)

In python classes are defined with the class keyword.
Class methods are defined with the def keyword.
Every method must have one argument.
When a method is called from an instance the first argument is a reference
to the caller instance.
Conventionally the name of the first argument is self.

class Person:

def getName(self):

return "Federico"

def greet(self):

return "Hi! I am "+self.getName()

Federico Galatolo A very informal introduction to Python 26 / 39

Classes(2): Instance attributes

In python you can create, modify and retrieve instance attributes using the
dot (.) selector on the instance reference.
You can create and assign an instance attribute everywhere in a class
method.

class Person:

def setName(self, name):

self.name = name

def greet(self):

return "Hi! I am "+self.name

Federico Galatolo A very informal introduction to Python 27 / 39

Classes(3): Class attributes aka static attributes

You can create class attributes specifying them after the class declaration.
You can modify and retrieve class attributes using the dot (.) selector on
the class reference

class Person:

greeting = "Hi!"

def setName(self, name):

self.name = name

def greet(self):

return Person.greeting+" I am "+self.name

Federico Galatolo A very informal introduction to Python 28 / 39

Classes(4): Class methods aka static methods

You can specify class method as a normal class method without the first
argument (it make sense if you think about it)

class Person:

greeting = "Hi!"

def getGreeting():

return Person.greeting

g = Person.getGreeting()

Federico Galatolo A very informal introduction to Python 29 / 39

Classes Bonus: It is all about notation

“Nothing is true, everything is permitted”
Python does not know about static/non-static methods, it is all about
notation

class Person:

greeting = "Hi!"

def setName(self, name):

self.name = name

def greet(self):

return Person.greeting+" I am "+self.name

p = Person()

p.greet() # ok

Person.greet(p) # still ok

Federico Galatolo A very informal introduction to Python 30 / 39

Classes(5): Visibility

In python there is no such thing as a private method or attribute.
Everything is public

The naming convention for “private” methods and attributes is to precede
their name with the symbol.

class Person:

def setName(self, name):

self._name = name

def greet(self):

return "Hi! I am "+self._name

Federico Galatolo A very informal introduction to Python 31 / 39

Classes(6): Constructor

In python the construct function is named init and it is called at
object instantiation.
You can specify one or more arguments.
As for all the python methods the first one is the object instance reference.

class Person:

def __init__(self, name):

self._name = name

def greet(self):

return "Hi! I am "+self._name

p = Person("Federico")

Federico Galatolo A very informal introduction to Python 32 / 39

Classes(7): Inheritance

You can extend a base class with another specifying the base class
between the parenthesis at class definition

class Person:

def __init__(self, name):

self._name = name

def greet(self):

return "Hi! I am "+self._name

class Student(Person):

def greet(self):

return "Leave me alone, I have to study"

Federico Galatolo A very informal introduction to Python 33 / 39

Classes(8): Data model

The are a lot of built-in functions provided by the base class of all the
classes object.
Each of which provide a specific behavior, a few are:

len (self)

Returns the “length” of the object (called by len())

str (self)

Returns the object as a string (called by str())

lt (self, other), lt (self, other), eq (self,
other), ...

Called when the object is used in a comparison

getitem (self, key), setitem (self, key, value),

Called in square brackets access

Federico Galatolo A very informal introduction to Python 34 / 39

Classes(9): Inheritance done well

When extending a base class you might need to call its construct or its
methods.
In order to get the base class class reference you need to use the super()

function

class Student(Person):

def __init__(self, name):

super(Student).__init__(self)

def greet(self):

return "Leave me alone, I have to study"

Keep in mind that super(Class) returns the base class reference.
And that super(Class, self) returns the base class instance.
e.g. super(Class).__init__(self) is the same as
super(Class, self).__init__()

Federico Galatolo A very informal introduction to Python 35 / 39

Classes(10): Inheritance tips and tricks

Keyword arguments are usually preferred over positional ones.
Since kwargs is a dict each construct should pop out its own keys a
forward the others.

class Person:

def __init__(self, **kwargs):

self.name = kwargs.pop("name")

class Student(Person):

def __init__(self, **kwargs):

self.grade = kwargs.pop("grade")

super(Student, self).__init__(**kwargs)

Federico Galatolo A very informal introduction to Python 36 / 39

Bonus: Arguments subtleties

Default arguments can be passed as keyword arguments

def greet(name="Federico", surname="Galatolo"):

return "Hi "+name+" "+surname

greet(surname="Cimino", name="Mario")

Federico Galatolo A very informal introduction to Python 37 / 39

Bonus: Dynamic type checking

In python 3 PEP 484 introduced dynamic type checking syntax to python

def greet(name: str, isFriend: bool = False) -> str:

return "Hi "+name if isFriend else "Hello "+name

It is just a syntax.
If you want to run dynamic type checking at run time you need to run a
type checker (for example mypi).

PEP stays for Python Enhancement Proposal and they are the RFCs of
python

Federico Galatolo A very informal introduction to Python 38 / 39

That’s all folks!

You can find the slides PDF as well as their LATEX source code on GitHub.

https://github.com/galatolofederico/python-very-informal-introduction

R federico.galatolo@ing.unipi.it

> @galatolo

� galatolo.me

� @galatolofederico

Federico Galatolo A very informal introduction to Python 39 / 39

